Справочный раздел Интернет Портала «Радиодар»

ТЕХНИЧЕСКИЙ СПРАВОЧНИК «Мощный БТИЗ (IGBT) транзистор FGH40N60UFD производства фирмы ON Semiconductor»

	Версия:	1
	Ревизия:	2
	Дата:	28.01.2020
РАДИОДАР. интернет-магазин радиотоваров		
• ПРОДАЖА РАДИОДЕТАЛЕЙ • КОМПОНЕНТОВ И ЗАПАСНЫХ ЧАСТЕЙ • В НАЛИЧИИ И ПОД ЗАКАЗ	НАЙДЕМ И ДОСТАВИ ДАЖЕ САМЬ	and the second
🕓 +7 900 272 92 92 🚺 📴	КИЕ КОМПОН	ненты 🧷 🖇
order@radiodar.ru	vww.radiodar. ^{россии и зару} ГАЗИН	

«Радиодар» 2020

IGBT - Field Stop

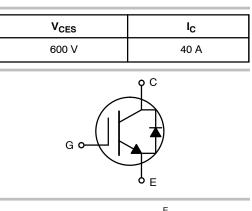
600 V, 40 A

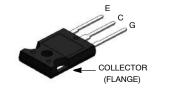
FGH40N60UFD

Description

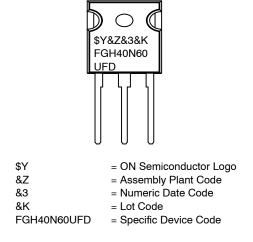
Using novel Field Stop IGBT technology, ON Semiconductor's field stop IGBTs offer the optimum performance for solar inverter, UPS, welder, microwave oven, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Features


- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V} @ \text{ I}_{C} = 40 \text{ A}$
- High Input Impedance
- Fast Switching
- This Device is Pb-Free and is RoHS Compliant


Applications

• Solar Inverter, UPS, Welder, PFC, Microwave Oven, Telecom, ESS


ON Semiconductor®

TO-247-3LD CASE 340CK

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description		Ratings	Unit	
V _{CES}	Collector to Emitter Voltage		600	V	
V _{GES}	Gate to Emitter Voltage Transient Gate-to-Emitter Voltage		±20	V	
			±30	V	
Ι _C	Collector Current T _C :	= 25°C	80	А	
	T _C =	= 100°C	40	А	
I _{CM} (Note 1)	Pulsed Collector Current T _C :	= 25°C	120	А	
PD	Maximum Power Dissipation $T_C = 25^{\circ}C$		290	W	
	T _C =	= 100°C	116	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{STG}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for Soldering Purposes, 1/8"	from Case for 5 Seconds	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: Pulse width limited by max. junction temperature.

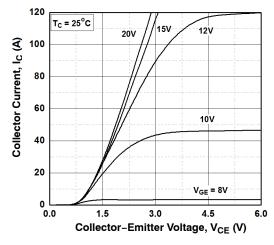
THERMAL CHARACTERISTICS

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case	-	0.43	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	1.45	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Qty per Tube
FGH40N60UFDTU	FGH40N60UFD	TO-247	Tube	N/A	N/A	30

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARAC	TERISTICS	•	•			
BV _{CES}	Collector to Emitter Breakdown Voltage	V_{GE} = 0 V, I_{C} = 250 μ A	600	-	-	V
$\Delta BV_{CES} / \Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 250 μA	-	0.6	-	V/°C
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V	-	_	250	μA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
N CHARACT	ERISTICS					
V _{GE(th)}	G-E Threshold Voltage	I_C = 250 μ A, V_{CE} = V_{GE}	4.0	5.0	6.5	V
V _{CE(sat)}	V _{CE(sat)} Collector to Emitter Saturation Voltage	I _C = 40 A, V _{GE} = 15 V,	_	1.8	2.4	V
		I_{C} = 40 A, V_{GE} = 15 V, T_{C} = 125°C	-	2.0	-	v
YNAMIC CHA	ARACTERISTICS			.		
C _{ies}	Input Capacitance	V _{CE} = 30 V, V _{GE} = 0 V,	_	2110	_	pF
C _{oes}	Output Capacitance	f = 1 MHz	_	200	-	pF
C _{res}	Reverse Transfer Capacitance	-	-	60	-	pF
WITCHING C	HARACTERISTICS		•			
T _{d(on)}	Turn-On Delay Time	$V_{\rm CC} = 400 \text{ V}, \text{ I}_{\rm C} = 40 \text{ A},$	-	24	-	ns
T _r	Rise Time	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25$ °C	-	44	-	ns
T _{d(off)}	Turn-Off Delay Time		-	112	-	ns
Τ _f	Fall Time		-	30	60	ns
Eon	Turn–On Switching Loss		-	1.19	-	mJ
E _{off}	Turn–Off Switching Loss		-	0.46	-	mJ
E _{ts}	Total Switching Loss		-	1.65	-	mJ
T _{d(on)}	Turn-On Delay Time	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 40 \text{ A},$	-	24	-	ns
T _r	Rise Time	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 125$ °C	-	45	-	ns
T _{d(off)}	Turn-Off Delay Time		-	120	-	ns
Τ _f	Fall Time	1	-	40	-	ns
Eon	Turn-On Switching Loss	1	-	1.2	-	mJ
E _{off}	Turn-Off Switching Loss	-	-	0.69	-	mJ
E _{ts}	Total Switching Loss		-	1.89	-	mJ
Qg	Total Gate Charge	$V_{CE} = 400 \text{ V}, I_C = 40 \text{ A},$	-	120	-	nC
Q _{ge}	Gate to Emitter Charge	$V_{GE} = 15 V$	-	14	-	nC
Q _{gc}	Gate to Collector Charge	1	_	58	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{FM}	Diode Forward Voltage	I _F = 20 A	$T_{C} = 25^{\circ}C$	-	1.95	2.6	V
			T _C = 125°C	-	1.85	-	
T _{rr}	Diode Reverse Recovery Time	I _F = 20 A, di _F /dt = 200 A/μs	$T_{C} = 25^{\circ}C$	-	45	-	ns
		αι _F /αι – 200 Α/μ3	T _C = 125°C	-	140	-	
Q _{rr}	Diode Reverse Recovery Charge]	$T_C = 25^{\circ}C$	-	75	-	nC
			$T_C = 125^{\circ}C$	-	375	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Typical Output Characteristics

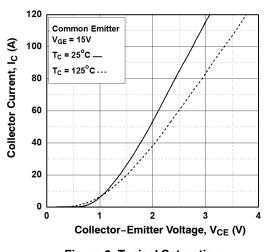


Figure 3. Typical Saturation Voltage Characteristics

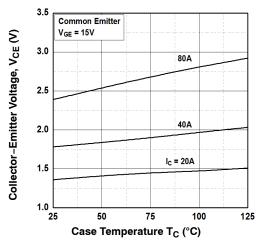
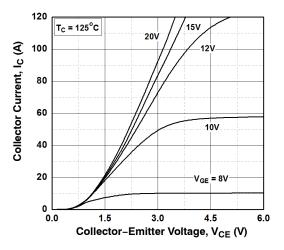
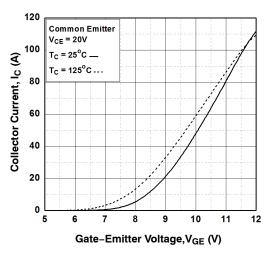




Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

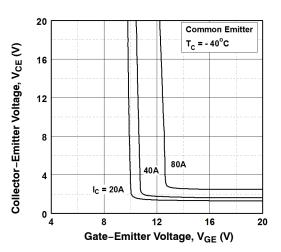


Figure 6. Saturation Voltage vs. V_{GE}

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

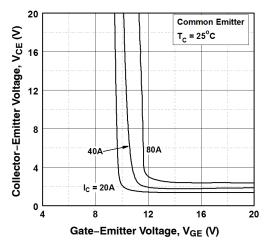


Figure 7. Saturation Voltage vs V_{GE}

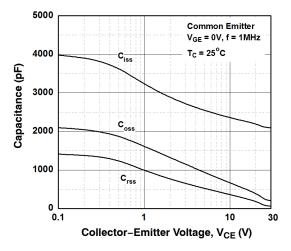
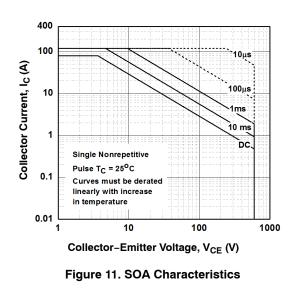



Figure 9. Capacitance Characteristics

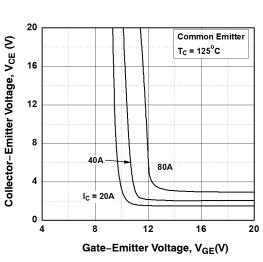


Figure 8. Saturation Voltage vs V_{GE}

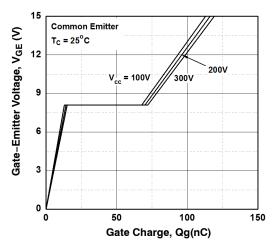
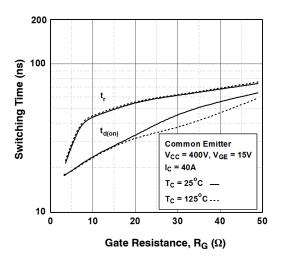
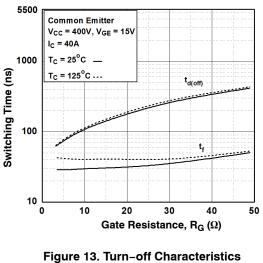




Figure 10. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

vs. Gate Resistance

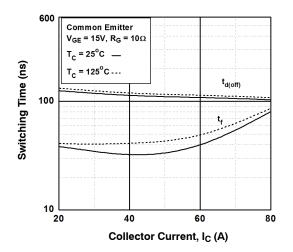
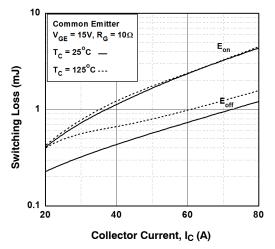
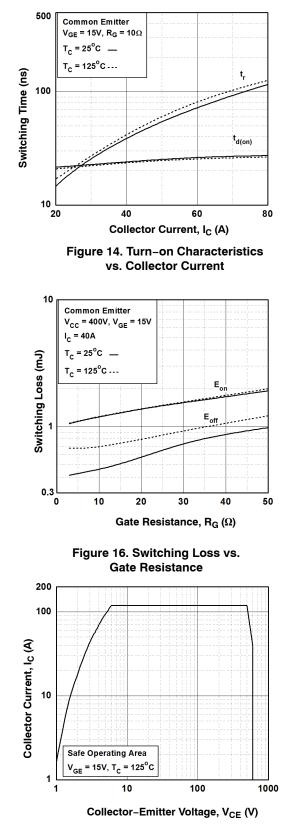
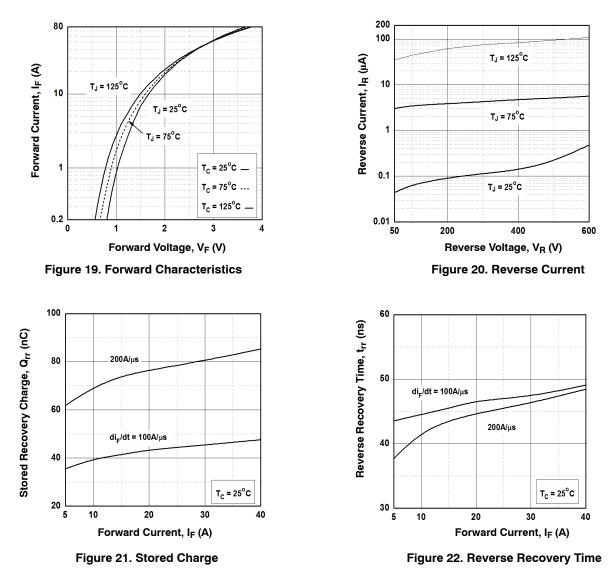
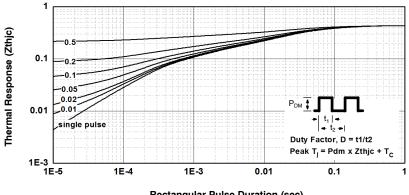
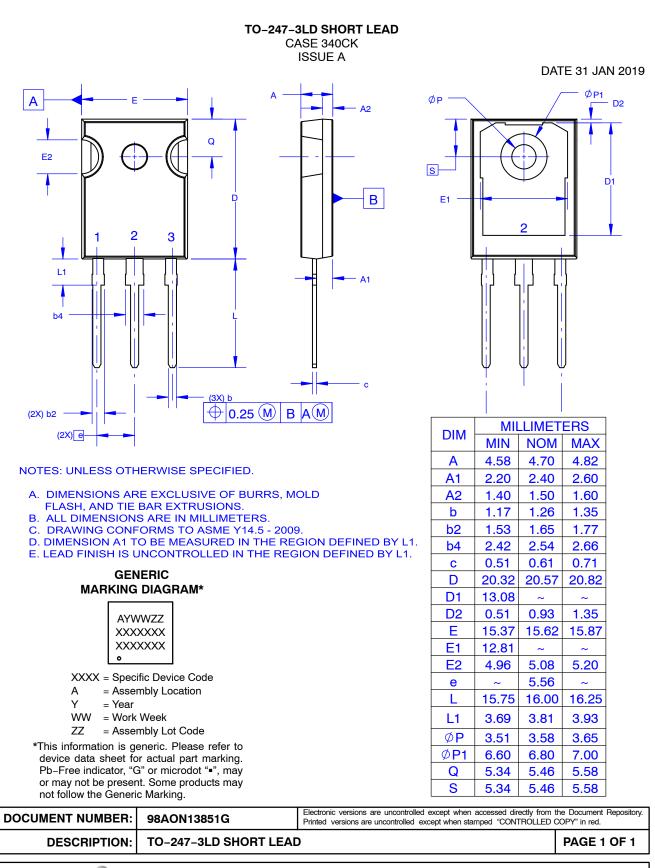


Figure 15. Turn-off Characteristics vs. Collector Current


Figure 17. Switching Loss vs. Collector Current

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)



Rectangular Pulse Duration (sec)

Figure 23. Transient Thermal Impedance of IGBT

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative